
Replacing suffix trees with
enhanced suffix arrays

Abstract

The suffix tree is one of the most important data structures in string processing and
comparative genomics. However, the space consumption of the suffix tree is a bottleneck in large
scale applications such as genome analysis. In this article, we will overcome this obstacle. We will
show how every algorithm that uses a suffix tree as data structure can systematically be replaced
with an algorithm that uses an enhanced suffix array and solves the same problem in the same time
complexity. The new algorithms are not only more space efficient than previous ones, but they are
also faster and easier to implement.

Introduction

The suffix tree is undoubtedly one of the most important data structures in string processing.
The suffix tree of a sequence S is an index structure that can be computed and stored in O(n) time
and space, where n = |S|. Once constructed, it can be used to efficiently solve a “myriad” of string
processing problems. These applications can be classified into the following kinds of tree traversals:

• a bottom-up traversal of the complete suffix tree,
• a top-down traversal of a subtree of the suffix tree,
• a traversal of the suffix tree using suffix links.

1

Referát

Vyhľadávanie v texte, Tibor Hegedüs

11. júna 2006

Michal Klempai, Veronika Vlnková

While suffix trees play a prominent role in algorithmics, they are not as widespread in actual
implementations of software tools as one should expect. There are two major reasons for this:

(i) Space consumption of a suffix tree is quite large.
(ii) And in most applications, there is a significant loss of efficiency on cached processor

architectures.

Basic notions

Let Σ be a finite ordered alphabet. Σ∗ is the set of all strings over Σ. We use Σ+ to denote the
set Σ∗ \{ε} of non-empty strings. Let S be a string of length |S| = n over Σ. We suppose that the size
of the alphabet is a constant, and that n< 232 (an integer in the range [0, n] can be stored in 4 bytes).
Special symbol $ is an element of Σ (which is larger then all other elements) but does not occur in
S. S[i] denotes the character at position i in S, for 0 ≤ i < n. For i ≤ j, S[i..j] denotes the substring S
starting with the character at position i and ending with the character at position j. The substring
S[i..j] is also denoted by the pair (i, j) of positions.

A suffix tree for the string S is a rooted directed tree with exactly n+1 leaves numbered 0 to
n. Each internal node, other than the root, has at least two children and each edge is labeled with a
nonempty substring of S$. No two edges out of a node can have edge-labels beginning with the
same character. The key feature of the suffix tree is that for any leaf i , the concatenation of the
edge-labels on the path from the root to leaf i exactly spells out
the string Si, where Si = S[i..n − 1]$ denotes the i th nonempty suffix of the string S$, 0 ≤ i ≤ n. Fig.
1 shows the suffix tree for the string S = acaaacatat.

The suffix array suftab of the string S is an array of integers in the range 0 to n, specifying
the lexicographic ordering of the n + 1 suffixes of the string S$. That is, Ssuftab[0], Ssuftab[1], . . . , Ssuftab[n]

is the sequence of suffixes of S$ in ascending lexicographic order (the suffix array requires 4n
bytes).

The inverse suffix array suftab−1 is a table of size n+1 such that suftab−1[suftab[q]] = q for
any 0 ≤ q ≤ n. suftab−1 can be computed in linear time from the suffix array and needs 4n bytes.

2

The table bwttab contains the Burrows and Wheeler transformation [6] known from data
compression. It is a table of size n + 1 such that for every i, 0 ≤ i ≤ n, bwttab[i] = S[suftab[i] − 1] if
suftab[i] ≠ 0. bwttab[i] is undefined if suftab[i] = 0. The table bwttab is stored in n bytes and
constructed in one scan over the suffix array in O(n) time.

The lcp-table lcptab is an array of integers in the range 0 to n. We define lcptab[0] = 0 and
lcptab[i] is the length of the longest common prefix of Ssuftab[i−1] and Ssuftab[i], for 1 ≤ i ≤ n. Since
Ssuftab[n] = $, we always have lcptab[n] = 0. The lcp-table can be computed as a by-product during the
construction of the suffix array, or alternatively, in linear time from the suffix array [20]. The lcp-
table requires 4n bytes in the worst case.

Algorithms based on lcp-intervals

A pair of substrings R = ((i1, j1), (i2, j2)) is a repeated pair if and only if (i1, j1) ≠ (i2, j2)
and S[i1..j1] = S[i2..j2]. The length of R is j1 − i1 + 1. A repeated pair ((i1, j1), (i2, j2)) is called left
maximal if S[i1 − 1] ≠ S[i2 − 1] and right maximal if S[j1 + 1] ≠ S[j2 + 1]. A repeated pair is called
maximal if it is left and right maximal. A substring ω of S is a (maximal) repeat if there is a
(maximal) repeated pair ((i1, j1), (i2, j2)) such that ω = S[i1..j1]. A supermaximal repeat is a
maximal repeat that never occurs as a substring of any other maximal repeat.

The lcp-intervals

Definition: An interval [i..j], 0 ≤ i < j ≤ n, is an lcp-interval of lcp-value l if
1. lcptab[i] < l,
2. lcptab[k] ≥ l for all k with i + 1 ≤ k ≤ j,
3. lcptab[k] = l for at least one k with i + 1 ≤ k ≤ j,
4. lcptab[j + 1] < l.

We will also use the shorthand l-interval (or even l-[i..j]) for an lcp-interval [i..j] of lcpvalue. Every
index k, i + 1 ≤ k ≤ j, with lcptab[k] = l is called l-index. The set of all l-indices of an l-interval [i..j]
will be denoted by lIndices(i, j). If [i..j] is an l-interval such that ω = S[suftab[i]..suftab[i] + l − 1] is
the longest common prefix of the suffixes Ssuftab[i], Ssuftab[i+1], . . ., Ssuftab[j], then [i..j] is called the ω-
interval.

3

A new algorithm for finding supermaximal repeats

Definition: An l-interval [i..j] is called a local maximum in the lcp-table if lcptab[k] = l for all i + 1
≤ k ≤ j. For instance, in the lcp-table of Fig. 2, the local maxima are the intervals [0..1], [2..3],
[4..5], [6..7], and [8..9].

Lemma: A string ω is a supermaximal repeat if and only if there is an l-interval [i..j] such that

• [i..j] is a local maximum in the lcp-table and [i..j] is the ω-interval,
• the characters bwttab[i], bwttab[i + 1], . . ., bwttab[j] are pairwise distinct.

Proof : (If) Since ω is a common prefix of the suffixes Ssuftab[i], . . . , Ssuftab[j] and i < j, it is
certainly a repeat. The characters S[suftab[i]+l], S[suftab[i+1]+l], . . ., S[suftab[j]+l] are pairwise
distinct because [i..j] is a local maximum in the lcp-table. By the second condition, the characters
bwttab[i], bwttab[i + 1], . . ., bwttab[j] are also pairwise distinct. It follows that ω is a maximal
repeat and that there is no repeat in S which contains ω. In other words, ω is a supermaximal repeat.

(Only if) Let ω be a supermaximal repeat of length |ω| = l. Furthermore, suppose that
suftab[i], suftab[i + 1], . . ., suftab[j], 0 ≤ i < j ≤ n, are the consecutive entries in suftab such that ω
is a common prefix of Ssuftab[i], Ssuftab[i+1], . . . , Ssuftab[j] but neither of Ssuftab[i−1] nor of Ssuftab[j+1].
Because ω is supermaximal, the characters S[suftab[i] + l], S[suftab[i + 1] + l], . . ., S[suftab[j] + l]
are pairwise distinct. Hence lcptab[k] = l for all k with i + 1 ≤ k ≤ j. Furthermore, lcptab[i] < l and
lcptab[j + 1] < l hold because otherwise ω would also be a prefix of Ssuftab[i−1] or Ssuftab[j+1]. All in all,
[i..j] is a local maximum of the array lcptab and [i..j] is the ω-interval. Finally, the characters
bwttab[i], bwttab[i + 1], . . ., bwttab[j] are pairwise distinct because ω is supermaximal. □

The preceding lemma does not only imply that the number of supermaximal repeats is
smaller than n, but it also suggests a simple linear time algorithm to compute all supermaximal
repeats of a string S: Find all local maxima in the lcp-table of S. For every local maximum [i..j]
check whether bwttab[i], bwttab[i + 1], . . . , bwttab[j] are pairwise distinct characters. If so, report
the string S[suftab[i]..suftab[i] + lcptab[i] − 1] as supermaximal repeat.

4

Computation of maximal unique matches

Next, we tackle a problem that has its origin in genome comparisons. Nowadays, the DNA
sequences of entire genomes are being determined at a rapid rate. When the genomic DNA
sequences of closely related organisms become available, one of the first questions researchers ask
is how the genomes align. The software tool [8] has been developed to efficiently align two
sufficiently similar genomic DNA sequences. In the first phase of its underlying algorithm,
a maximal unique match (MUM) decomposition of two genomes S1 and S2 is computed. Using the
suffix tree of S1#S2, MUMs can be computed in O(n) time and space, where n = |S1#S2| and # is a
symbol neither occurring in S1 nor in S2. However, the space consumption of the suffix tree has
been identified to be a major problem when comparing large genomes. We will solve this problem
by using the suffix array enhanced with the lcp-table.

Definition: Given two sequences S1 and S2, a MUM is a sequence that occurs exactly once in S1 and
once in S2, and is not contained in any longer such sequence.

Lemma: Let # be a unique separator symbol not occurring in S1 and S2 and let S = S1#S2. The
string u is a MUM of S1 and S2 if and only if u is a supermaximal repeat in S such that

(1) there is only one maximal repeated pair ((i1, j1), (i2, j2)) with u = S[i1..j1] = S[i2..j2],
(2) j1 < p < i2, where p = |S1| is the position of # in S.

Proof. (If) It is a consequence of conditions (1) and (2) that u occurs exactly once in S1 and once in
S2. Because the repeated pair ((i1, j1), (i2, j2)) is maximal, u is a MUM.

(Only if) If u is a MUM of the sequences S1 and S2, then it occurs exactly once in S1 (say, u =
S1[i1..j1]) and once in S2 (say, u = S2[i2..j2]), and is not contained in any longer such sequence.
Clearly, ((i1, j1), (p +1+i2, p +1+j2)) is a repeated pair in S = S1$S2, where p = |S1|. Because u
occurs exactly once in S1 and once in S2, and is not contained in any longer such sequence, it
follows that u is a supermaximal repeat in S satisfying conditions (1) and (2). □

The first version of software [8] computed MUMs in O(|S|) time and space with the help of
the suffix tree of S = S1#S2. Using an enhanced suffix array, this task can be done more time and
space economically as follows: Find all local maxima in the lcptable of S = S1#S2. For every local
maximum [i..j] check whether i + 1 = j, bwttab[i] = bwttab[j], and suftab[i] < p < suftab[j]. If so,
report S[suftab[i]..suftab[i]+lcptab[i]−1] as MUM.

5

The lcp-interval tree of a suffix array

In [20] was presented a linear time algorithm to simulate the bottom-up traversal of a suffix tree
with a suffix array and its lcp-information. It computes all lcp-intervals of the lcptable with the help
of a stack. The elements on the stack are lcp-intervals represented by tuples <lcp, lb, rb>, where lcp
is the lcp-value of the interval, lb is its left boundary, and rb is its right boundary. In Algorithm 1,
push (pushes an element onto the stack) and pop (pops an element from the stack and returns that
element) are the usual stack operations, while top provides a pointer to the topmost element of the
stack. Furthermore, ⊥ stands for an undefined value.

Algorithm 1 (Computation of lcp-intervals (adapted from Kasai et al. [20])).

1. push(<0, 0, >⊥)
2. for i := 1 to n do
3. lb := i − 1
4. while lcptab[i] < top.lcp
5. top.rb := i − 1
6. interval := pop
7. report(interval)
8. lb := interval.lb
9. if lcptab[i] > top.lcp then
10. push(<lcptab[i], lb, >⊥)

Definition: An m-interval [l..r] is said to be embedded in an l-interval [i..j] if it is a subinterval of
[i..j] (i.e., i ≤ l < r ≤ j) and m > l2. The l-interval [i..j] is then called the interval enclosing [l..r]. If
[i..j] encloses [l..r] and there is no interval embedded in [i..j] that also encloses [l..r], then [l..r] is
called a child interval of [i..j].

Theorem: Consider the for-loop of Algorithm 1 for some index i. Let top be the topmost interval on
the stack and top−1 be the interval next to it (note that top−1.lcp < top.lcp). If lcptab[i] < top.lcp, then
before top will be popped from the stack in the whileloop, the following holds:

(1) If lcptab[i] top−1.lcp, then top is the child interval of top−1.
(2) If top−1.lcp < lcptab[i] < top.lcp, then top is the child interval of the lcptab[i]-interval that

contains i .

An important consequence of this Theorem is the correctness of Algorithm 2. There, the lcp-
interval tree is traversed in a bottom-up fashion by a linear scan of the lcptable, while storing
needed information on a stack. We stress that the lcp-interval tree is not really build: whenever an l-
interval is processed by the generic function process, only its child intervals have to be known.
These are determined solely from the lcp-information, i.e., there are no explicit parent-child
pointers in our framework. In contrast to Algorithm 1, Algorithm 2 computes all lcp-intervals of the
lcp-table with the child information.

6

Algorithm 2 (Traverse and process the lcp-interval tree).

1. lastInterval := ⊥ push(<0, 0,⊥, []>)
2. for i := 1 to n do
3. lb := i − 1
4. while lcptab[i] < top.lcp
5. top.rb := i − 1
6. lastInterval := pop
7. process(lastInterval)
8. lb := lastInterval.lb
9. if lcptab[i] ≤ top.lcp then
10. top.childList := add(top.childList, lastInterval)
11. lastInterval := ⊥
12. if lcptab[i] > top.lcp then
13. if lastInterval ≠ ⊥ then
14. push(<lcptab[i], lb,⊥, [lastInterval]>)
15. lastInterval := ⊥
16. else push(<lcptab[i], lb,⊥, []>)

In the next section, we will show how to solve problem merely by specifying the function
process called in line 8 of Algorithm 2.

Bottom-up traversals

An efficient implementation of an optimal algorithm for finding maximal repeated pairs

The computation of maximal repeated pairs plays an important role in the analysis of a genome.
The algorithm of Gusfield [15, p. 147] computes maximal repeated pairs of a sequence S of length
n in O(|Σ|n + z) time, where z is the number of maximal repeated pairs. This running time is
optimal. In this section, we show how to implement Gusfield’s algorithm using enhanced suffix
arrays. This considerably reduces the space requirements, thus removing a bottle neck in the
algorithm.

Let ⊥ stand for the undefined character. We assume that it is different from all characters in
Σ. Let [i..j] be an l-nterval and u = S[suftab[i]..suftab[i] + l − 1]. Define P[i..j] to be the set of
positions p such that u is a prefix of Sp, i.e., P[i..j] = {suftab[r] | i ≤ r ≤ j }. We divide P[i..j] into
disjoint and possibly empty sets according to the characters to the left of each position: For any a ∈
Σ { } ∪ ⊥ define

P[i..j](a) = {0 | 0 ∈ P[i..j]} if a =⊥, and {p | p ∈ P[i..j], p > 0, and S[p − 1] = a} otherwise.

The algorithm computes position sets in a bottom-up strategy. In terms of an lcp-interval
tree, this means that the lcp-interval [i..j] is processed only after all child intervals of [i..j] have been
processed.

Suppose [i..j] is a singleton interval, i.e., i = j. Let p = suftab[i]. Then P[i..j] = {p} and

P[i..j](a)= {p} if p >0 and S[p − 1] = a or p = 0 and a=⊥, and ∅ otherwise.

Now suppose that i < j. For each a ∈ Σ { }∪ ⊥ , P[i..j](a) is computed step by step while

7

processing the child intervals of [i..j]. These are processed from left to right. Suppose that they are
numbered, and that we have already processed q child intervals of [i..j]. By Pq

[i..j](a) we denote the
subset of P[i..j](a) obtained after processing the q th child interval of [i..j]. Let [i'..j'] be the (q +1) th
child interval of [i..j]. Due to the bottom-up strategy, [i'..j'] has been processed and hence the
position sets P[i'..j'](b) are available for any b ∈ Σ { }∪ ⊥ .

The interval [i'..j'] is processed in the following way: First, maximal repeated pairs are
output by combining the position set Pq

[i..j](a), a ∈ Σ { }∪ ⊥ , with position sets P[i'..j'](b), b ∈ Σ ∪
{ }⊥ . In particular, ((p, p + l − 1), (p', p' + l − 1)), p < p', are output for all p ∈ Pq

[i..j](a) and p' ∈
P[i'..j'](b), a, b ∈ Σ { } ∪ ⊥ and a ≠ b.

It is clear that u occurs at position p and p'. Hence ((p, p + l − 1), (p', p' + l − 1)) is a repeated
pair. By construction, only those positions p and p' are combined for which the characters
immediately to the left, i.e., at positions p −1 and p' − 1 (if they exist), are different. This guarantees
left-maximality of the output repeated pairs. The position sets Pq

[i..j](a) were inherited from child
intervals of [i..j] that are different from [i'..j']. Hence the characters immediately to the right of u at
positions p + l and p' + l (if they exist) are different. As a consequence, the output repeated pairs are
maximal. Once the maximal repeated pairs for the current child interval [i'..j'] have been output, the
union Pq+1

[i..j](e) := Pq
[i..j](e) ∪ P[i'..j'](e) is computed for all e ∈ Σ { }∪ ⊥ . That is, the position sets are

inherited from [i'..j'] to [i..j].
The algorithm runs in O(|Σ|n+ z) time. The space requirement is O(|Σ|n) (in practice,

however, the stack size is much smaller). Altogether the algorithm is optimal, since its space and
time requirement is linear in the size of the input plus the output.

8

Computing the Ziv-Lempel decomposition

As a second application of the bottom-up traversal of the lcp-interval tree, we will describe
how to compute the ZivLempel decomposition [33, 34] of a string. The Ziv–Lempel decomposition
plays an important role in data compression.

For each position i of S, let li denote the length of the longest prefix of S[i..n] that also
occurs as a substring of S starting at some position j < i. Let si denote the starting position of the
leftmost occurrence of this substring in S if li > 0, and si = 0, otherwise; see Fig. 3.

The Ziv–Lempel decomposition of S is the list of indices i1, i2, . . . , ik, defined inductively by
i1 = 0 and iB+1 = iB + max{1, liB } for B ≥ 1 and iB ≤ n. The substring S[iB..iB+1−1], 1 ≤ B ≤ k, obtained in this
way is called the B th block of the Ziv–Lempel decomposition of S.

The Ziv–Lempel decomposition of a string S can also be computed off-line in linear time by
a bottom-up traversal of the lcp-interval tree; see Algorithm 4.4. To this end, we add another value
min of type integer to the

quadruples stored on the stack. This value is initially set to ⊥ and will be updated by the process
function. At any stage, when the function process is applied to an l-interval [i..j], all its child
intervals are known and have already been processed (note that [i..j] ≠ [0..n] must hold). Let
[l1..r1], [l2..r2], . . . , [lk..rk] be the k child intervals of [i..j], stored in its childList. Let min1, . . . ,
mink be the respective min-values of the child intervals. Let

M = {min1, . . . , mink} ∪ suftab[q] | q [∈ i..j] and q∉ [lp..rp] for all 1 ≤ p ≤ k.

Compute min := minM and assign for all q ∈ M with q ≠ min: sq := min and lq := l. Finally, for the
root [0..n] of the lcpinterval tree, we assign for all q ∈ M: sq := 0 and lq := 0.

9

References

[3] A. Apostolico, The myriad virtues of subword trees, in: Combinatorial Algorithms on Words, Springer-Verlag, Berlin, 1985, pp. 85–96.

[6] M. Burrows, D.J.Wheeler, A block-sorting lossless data compression algorithm, Research Report 124, Digital Systems Research Center, 1994.

[8] A.L. Delcher, S. Kasif, R.D. Fleischmann, J. Peterson, O. White, S.L. Salzberg, Alignment of whole genomes,
Nucl. Acids Res. 27 (1999) 23692376.

[15] D. Gusfield, Algorithms on Strings, Trees, and Sequences, Cambridge University Press, New York, 1997.

[20] T. Kasai, G. Lee, H. Arimura, S. Arikawa, K. Park, Linear-time longest-common-prefix computation in suffix arrays and its applications, in:
Proc. Annual Symposium on Combinatorial Pattern Matching, in: Lecture Notes in Computer Science, vol. 2089, Springer-Verlag, Berlin,
2001, pp. 181–192.

[33] J. Ziv, A. Lempel, A universal algorithm for sequential data compression, IEEE Trans. Inform. Theory 23 (3) (1977) 337–343.

[34] J. Ziv, A. Lempel, Compression of individual sequences via variable length coding, IEEE Trans. Inform. Theory 24 (5) (1978) 530–536.

10

