
Replacing suffix trees with
enhanced suffix arrays

Abstract

The  suffix  tree  is  one  of  the  most  important  data  structures  in  string  processing  and 
comparative genomics. However, the space consumption of the suffix tree is a bottleneck in large 
scale applications such as genome analysis. In this article, we will overcome this obstacle. We will 
show how every algorithm that uses a suffix tree as data structure can systematically be replaced 
with an algorithm that uses an enhanced suffix array and solves the same problem in the same time 
complexity. The new algorithms are not only more space efficient than previous ones, but they are 
also faster and easier to implement.

Introduction

The suffix tree is undoubtedly one of the most important data structures in string processing. 
The suffix tree of a sequence S is an index structure that can be computed and stored in O(n) time 
and space, where n = |S|. Once constructed, it can be used to efficiently solve a “myriad” of string 
processing problems. These applications can be classified into the following kinds of tree traversals:

• a bottom-up traversal of the complete suffix tree,
• a top-down traversal of a subtree of the suffix tree,
• a traversal of the suffix tree using suffix links.
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While suffix  trees  play a  prominent  role  in  algorithmics,  they are  not  as  widespread in  actual 
implementations of software tools as one should expect. There are two major reasons for this:

(i) Space consumption of a suffix tree is quite large.
(ii) And in most applications, there is a significant loss of efficiency on cached processor 

architectures.

Basic notions

Let Σ be a finite ordered alphabet. Σ∗ is the set of all strings over Σ. We use Σ+ to denote the 
set Σ∗ \{ε} of non-empty strings. Let S be a string of length |S| = n over Σ. We suppose that the size 
of the alphabet is a constant, and that n< 232 (an integer in the range [0, n] can be stored in 4 bytes). 
Special symbol $ is an element of Σ (which is larger then all other elements) but does not occur in 
S. S[i] denotes the character at position i in S, for 0 ≤ i < n. For i ≤  j, S[i..j] denotes the substring S 
starting with the character at position  i  and ending with the character at position  j. The substring 
S[i..j] is also denoted by the pair (i, j) of positions.

A suffix tree for the string S is a rooted directed tree with exactly n+1 leaves numbered 0 to 
n. Each internal node, other than the root, has at least two children and each edge is labeled with a 
nonempty substring of  S$. No two edges out of a node can have edge-labels beginning with the 
same character. The key feature of the suffix tree is that for any leaf  i  , the concatenation of the 
edge-labels on the path from the root to leaf i exactly spells out
the string Si, where Si = S[i..n − 1]$ denotes the i th nonempty suffix of the string S$, 0 ≤ i ≤ n. Fig. 
1 shows the suffix tree for the string S = acaaacatat.

The suffix array suftab of the string S is an array of integers in the range 0 to n, specifying 
the lexicographic ordering of the n + 1 suffixes of the string S$. That is, Ssuftab[0], Ssuftab[1], . . . , Ssuftab[n] 

is the sequence of suffixes of  S$ in ascending lexicographic order (the suffix array requires 4n 
bytes). 

The inverse suffix array suftab−1 is a table of size n+1 such that suftab−1[suftab[q]] = q for 
any 0 ≤ q ≤ n. suftab−1 can be computed in linear time from the suffix array and needs 4n bytes.
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The table bwttab contains the Burrows and Wheeler transformation [6] known from data 
compression. It is a table of size n + 1 such that for every i, 0 ≤ i ≤ n, bwttab[i] = S[suftab[i] − 1] if 
suftab[i] ≠ 0. bwttab[i] is undefined if suftab[i] = 0. The table bwttab is stored in n bytes and 
constructed in one scan over the suffix array in O(n) time. 

The lcp-table lcptab is an array of integers in the range 0 to n. We define lcptab[0] = 0 and 
lcptab[i]  is the length of the longest common prefix of  Ssuftab[i−1] and  Ssuftab[i], for 1  ≤ i  ≤ n. Since 
Ssuftab[n] = $, we always have lcptab[n] = 0. The lcp-table can be computed as a by-product during the 
construction of the suffix array, or alternatively, in linear time from the suffix array [20]. The lcp-
table requires 4n bytes in the worst case.

Algorithms based on lcp-intervals

A pair of substrings R = ((i1, j1), (i2, j2)) is a repeated pair if and only if (i1, j1) ≠ (i2, j2)  
and S[i1..j1] = S[i2..j2]. The length of R is j1 − i1 + 1. A repeated pair ((i1, j1), (i2, j2)) is called left  
maximal if S[i1 − 1] ≠ S[i2 − 1] and right maximal if S[j1 + 1] ≠ S[j2 + 1]. A repeated pair is called 
maximal if it is left and right maximal. A substring ω of S is a (maximal) repeat if there is a 
(maximal) repeated pair ((i1, j1), (i2, j2)) such that ω = S[i1..j1]. A supermaximal repeat is a 
maximal repeat that never occurs as a substring of any other maximal repeat.

The lcp-intervals

Definition: An interval [i..j], 0 ≤ i < j ≤ n, is an lcp-interval of lcp-value l if
1. lcptab[i] < l,
2. lcptab[k] ≥ l for all k with i + 1 ≤ k ≤  j,
3. lcptab[k] = l for at least one k with i + 1 ≤ k ≤  j,
4. lcptab[j + 1] < l.

We will also use the shorthand l-interval (or even l-[i..j]) for an lcp-interval [i..j] of lcpvalue. Every 
index k,  i + 1 ≤ k ≤ j, with lcptab[k] = l is called l-index. The set of all l-indices of an l-interval [i..j] 
will be denoted by lIndices(i, j). If [i..j] is an l-interval such that ω = S[suftab[i]..suftab[i] + l − 1] is 
the longest common prefix of the suffixes Ssuftab[i], Ssuftab[i+1], . . ., Ssuftab[j ], then [i..j] is called the ω-
interval.
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A new algorithm for finding supermaximal repeats

Definition: An l-interval [i..j] is called a local maximum in the lcp-table if lcptab[k] = l for all i + 1 
≤ k  ≤  j. For instance, in the lcp-table of Fig. 2, the local maxima are the intervals  [0..1],  [2..3], 
[4..5], [6..7], and [8..9].

Lemma: A string ω is a supermaximal repeat if and only if there is an l-interval [i..j] such that

• [i..j] is a local maximum in the lcp-table and [i..j] is the ω-interval,
• the characters bwttab[i], bwttab[i + 1], . . ., bwttab[j] are pairwise distinct.

Proof : (If) Since  ω is a common prefix of the suffixes  Ssuftab[i], . . . , Ssuftab[j] and i < j, it is 
certainly a repeat. The characters  S[suftab[i]+l], S[suftab[i+1]+l], . . ., S[suftab[j]+l]  are pairwise 
distinct because [i..j] is a local maximum in the lcp-table. By the second condition, the characters 
bwttab[i],  bwttab[i  +  1], . . .,  bwttab[j]  are also pairwise distinct. It follows that  ω  is a maximal 
repeat and that there is no repeat in S which contains ω. In other words, ω is a supermaximal repeat.

(Only if)  Let  ω  be a  supermaximal  repeat  of  length  |ω|  =  l.  Furthermore,  suppose  that 
suftab[i], suftab[i + 1], . . ., suftab[j], 0 ≤ i < j ≤ n, are the consecutive entries in suftab such that ω 
is  a  common  prefix  of  Ssuftab[i],  Ssuftab[i+1], . . . , Ssuftab[j] but  neither  of  Ssuftab[i−1] nor  of  Ssuftab[j+1]. 
Because ω is supermaximal, the characters S[suftab[i] + l], S[suftab[i + 1] + l], . . ., S[suftab[j] + l] 
are pairwise distinct. Hence lcptab[k] = l for all k with i + 1  ≤ k  ≤  j. Furthermore, lcptab[i] < l and 
lcptab[j + 1] < l hold because otherwise ω would also be a prefix of Ssuftab[i−1] or Ssuftab[j+1]. All in all, 
[i..j]  is a local  maximum of the array  lcptab  and  [i..j]  is the  ω-interval.  Finally,  the characters 
bwttab[i], bwttab[i + 1], . . ., bwttab[j] are pairwise distinct because ω is supermaximal. □

The preceding  lemma does  not  only imply that  the  number  of  supermaximal  repeats  is 
smaller than  n, but it also suggests a simple linear time algorithm to compute all supermaximal 
repeats of a string  S: Find all local maxima in the lcp-table of  S. For every local maximum [i..j] 
check whether bwttab[i], bwttab[i + 1], . . . , bwttab[j] are pairwise distinct characters. If so, report 
the string S[suftab[i]..suftab[i] + lcptab[i] − 1] as supermaximal repeat. 
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Computation of maximal unique matches

Next, we tackle a problem that has its origin in genome comparisons. Nowadays, the DNA 
sequences  of  entire  genomes  are  being  determined  at  a  rapid  rate.  When  the  genomic  DNA 
sequences of closely related organisms become available, one of the first questions researchers ask 
is  how the  genomes  align.  The  software  tool  [8]  has  been  developed  to  efficiently  align  two 
sufficiently  similar  genomic  DNA  sequences.  In  the  first  phase  of  its  underlying  algorithm, 
a maximal unique match (MUM) decomposition of two genomes S1 and S2 is computed. Using the 
suffix tree of S1#S2,  MUMs can be computed in O(n) time and space, where n = |S1#S2|  and # is a 
symbol neither occurring in  S1 nor in  S2. However, the space consumption of the suffix tree has 
been identified to be a major problem when comparing large genomes. We will solve this problem 
by using the suffix array enhanced with the lcp-table. 

Definition: Given two sequences S1 and S2, a MUM is a sequence that occurs exactly once in S1 and 
once in S2, and is not contained in any longer such sequence.

Lemma:  Let  #  be a unique separator symbol not occurring in  S1 and  S2 and let  S  =  S1#S2. The 
string u is a MUM of S1 and S2 if and only if u is a supermaximal repeat in S such that

(1) there is only one maximal repeated pair ((i1, j1), (i2, j2)) with u = S[i1..j1] = S[i2..j2],
(2) j1 < p < i2, where p = |S1| is the position of # in S.

Proof. (If) It is a consequence of conditions (1) and (2) that u occurs exactly once in S1 and once in 
S2. Because the repeated pair ((i1, j1), (i2, j2)) is maximal, u is a MUM. 

(Only if) If u is a MUM of the sequences S1 and S2, then it occurs exactly once in S1 (say, u = 
S1[i1..j1]) and once in  S2 (say,  u  =  S2[i2..j2]), and is not contained in any longer such sequence. 
Clearly,  ((i1, j1), (p  +1+i2, p  +1+j2))  is a repeated pair in  S  =  S1$S2, where  p  = |S1|.  Because  u 
occurs exactly once in  S1 and once in  S2,  and is  not contained in any longer such sequence, it 
follows that u is a supermaximal repeat in S satisfying conditions (1) and (2). □

The first version of software [8] computed MUMs in O(|S|) time and space with the help of 
the suffix tree of  S = S1#S2. Using an enhanced suffix array, this task can be done more time and 
space economically as follows: Find all local maxima in the lcptable of S = S1#S2. For every local 
maximum [i..j] check whether i + 1 = j, bwttab[i] = bwttab[j], and suftab[i] < p < suftab[j]. If so, 
report S[suftab[i]..suftab[i]+lcptab[i]−1] as MUM. 
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The lcp-interval tree of a suffix array

In [20] was presented a linear time algorithm to simulate the bottom-up traversal of a suffix tree 
with a suffix array and its lcp-information. It computes all lcp-intervals of the lcptable with the help 
of a stack. The elements on the stack are lcp-intervals represented by tuples <lcp, lb, rb>, where lcp 
is the lcp-value of the interval, lb is its left boundary, and rb is its right boundary. In Algorithm 1, 
push (pushes an element onto the stack) and pop (pops an element from the stack and returns that 
element) are the usual stack operations, while top provides a pointer to the topmost element of the 
stack. Furthermore,  ⊥ stands for an undefined value.

Algorithm 1 (Computation of lcp-intervals (adapted from Kasai et al. [20])).

1.   push(<0, 0, >⊥ )
2.   for i := 1 to n do
3.         lb := i − 1
4.         while lcptab[i] < top.lcp
5.               top.rb := i − 1
6.               interval := pop
7.               report(interval)
8.               lb := interval.lb
9.         if  lcptab[i] > top.lcp then
10.               push(<lcptab[i], lb, >⊥ )

Definition: An m-interval [l..r] is said to be embedded in an l-interval [i..j] if it is a subinterval of 
[i..j] (i.e., i ≤ l < r ≤ j) and m > l2. The l-interval [i..j] is then called the interval enclosing [l..r]. If 
[i..j] encloses [l..r] and there is no interval embedded in [i..j] that also encloses [l..r], then [l..r] is 
called a child interval of [i..j].

Theorem: Consider the for-loop of Algorithm 1 for some index i. Let top be the topmost interval on 
the stack and top−1 be the interval next to it (note that top−1.lcp < top.lcp). If lcptab[i] < top.lcp, then 
before top will be popped from the stack in the whileloop, the following holds:

(1) If  lcptab[i] top−1.lcp, then top is the child interval of top−1.
(2) If top−1.lcp < lcptab[i] < top.lcp, then top is the child interval of the lcptab[i]-interval that  

contains i .

An important consequence of this Theorem is the correctness of Algorithm 2. There, the lcp-
interval tree is traversed in a bottom-up fashion by a linear scan of the lcptable, while storing 
needed information on a stack. We stress that the lcp-interval tree is not really build: whenever an l-
interval is processed by the generic function process, only its child intervals have to be known. 
These are determined solely from the lcp-information, i.e., there are no explicit parent-child 
pointers in our framework. In contrast to Algorithm 1, Algorithm 2 computes all lcp-intervals of the 
lcp-table with the child information.
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Algorithm 2 (Traverse and process the lcp-interval tree).

1.   lastInterval :=  ⊥ push(<0, 0,⊥, [ ]>)
2.   for i := 1 to n do
3.         lb := i − 1
4.         while lcptab[i] < top.lcp
5.               top.rb := i − 1
6.               lastInterval := pop
7.               process(lastInterval)
8.               lb := lastInterval.lb
9.               if lcptab[i] ≤ top.lcp then
10.                     top.childList := add(top.childList, lastInterval)
11.                     lastInterval :=  ⊥
12.         if lcptab[i] > top.lcp then
13.               if lastInterval ≠  ⊥ then
14.                     push(<lcptab[i], lb,⊥, [lastInterval]>)
15.                     lastInterval :=  ⊥
16.               else push(<lcptab[i], lb,⊥, [ ]>)

In the next section, we will show how to solve problem merely by specifying the function 
process called in line 8 of Algorithm 2.

Bottom-up traversals

An efficient implementation of an optimal algorithm for finding maximal repeated pairs

The computation of maximal repeated pairs plays an important role in the analysis of a genome. 
The algorithm of Gusfield [15, p. 147] computes maximal repeated pairs of a sequence S of length 
n  in O(|Σ|n  +  z)  time,  where  z  is  the number  of  maximal  repeated pairs.  This running time is 
optimal. In this section, we show how to implement Gusfield’s algorithm using enhanced suffix 
arrays.  This  considerably  reduces  the  space  requirements,  thus  removing  a  bottle  neck  in  the 
algorithm. 

Let  ⊥ stand for the undefined character. We assume that it is different from all characters in 
Σ. Let  [i..j]  be an  l-nterval and  u  =  S[suftab[i]..suftab[i] +  l −  1]. Define  P[i..j]  to be the set of 
positions p such that u is a prefix of Sp, i.e., P[i..j] = {suftab[r] | i ≤ r ≤  j }. We divide P[i..j] into 
disjoint and possibly empty sets according to the characters to the left of each position: For any a ∈ 
Σ  { } ∪ ⊥ define 

P[i..j](a) = {0 | 0  ∈ P[i..j]} if a =⊥, and {p | p  ∈ P[i..j], p > 0, and S[p − 1] = a} otherwise. 

The algorithm computes position sets in a bottom-up strategy. In terms of an lcp-interval 
tree, this means that the lcp-interval [i..j] is processed only after all child intervals of [i..j] have been 
processed.

Suppose [i..j] is a singleton interval, i.e., i = j. Let p = suftab[i]. Then P[i..j] = {p} and 

P[i..j](a)= {p} if p >0 and S[p − 1] = a or p = 0 and a=⊥, and  ∅ otherwise.

Now suppose that  i < j. For each  a   ∈ Σ { }∪ ⊥ ,  P[i..j](a)  is computed step by step while 
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processing the child intervals of [i..j]. These are processed from left to right. Suppose that they are 
numbered, and that we have already processed q child intervals of [i..j]. By Pq

[i..j  ](a) we denote the 
subset of P[i..j](a) obtained after processing the q th child interval of [i..j]. Let [i'..j'] be the (q +1) th 
child  interval  of  [i..j].  Due to  the  bottom-up strategy,  [i'..j']  has been  processed  and hence  the 
position sets P[i'..j'](b) are available for any b  ∈ Σ  { }∪ ⊥ .

The interval  [i'..j']  is  processed  in  the  following way:  First,  maximal  repeated pairs  are 
output by combining the position set Pq

[i..j](a), a  ∈ Σ  { }∪ ⊥ , with position sets P[i'..j'](b), b  ∈ Σ ∪ 
{ }⊥ . In particular, ((p, p + l  − 1), (p', p' + l − 1)),  p < p', are output for all p  ∈ Pq

[i..j](a) and p' ∈ 
P[i'..j'](b), a, b  ∈ Σ  { } ∪ ⊥ and a ≠ b.

It is clear that u occurs at position p and p'. Hence ((p, p + l − 1), (p', p' + l − 1)) is a repeated 
pair.  By  construction,  only  those  positions  p  and  p' are  combined  for  which  the  characters 
immediately to the left, i.e., at positions p −1 and p' − 1 (if they exist), are different. This guarantees 
left-maximality of the output repeated pairs. The position sets  Pq

[i..j](a)  were inherited from child 
intervals of [i..j] that are different from [i'..j']. Hence the characters immediately to the right of u at 
positions p + l and p' + l (if they exist) are different. As a consequence, the output repeated pairs are 
maximal. Once the maximal repeated pairs for the current child interval [i'..j'] have been output, the 
union Pq+1

[i..j](e) := Pq
[i..j](e)  ∪ P[i'..j'](e) is computed for all e  ∈ Σ  { }∪ ⊥ . That is, the position sets are 

inherited from [i'..j'] to [i..j]. 
The  algorithm  runs  in  O(|Σ|n+  z)  time.  The  space  requirement  is  O(|Σ|n) (in  practice, 

however, the stack size is much smaller). Altogether the algorithm is optimal, since its space and 
time requirement is linear in the size of the input plus the output.

8



Computing the Ziv-Lempel decomposition

As a second application of the bottom-up traversal of the lcp-interval tree, we will describe 
how to compute the ZivLempel decomposition [33, 34] of a string. The Ziv–Lempel decomposition 
plays an important role in data compression.

For each position  i  of  S,  let  li denote the length of the longest prefix of  S[i..n]  that also 
occurs as a substring of S starting at some position j < i. Let si denote the starting position of the 
leftmost occurrence of this substring in S if li > 0, and si = 0, otherwise; see Fig. 3.

The Ziv–Lempel decomposition of S is the list of indices i1, i2, . . . , ik, defined inductively by 
i1 = 0 and iB+1 = iB + max{1, liB } for B ≥ 1 and iB ≤ n. The substring S[iB..iB+1−1], 1 ≤ B ≤ k, obtained in this 
way is called the B th block of the Ziv–Lempel decomposition of S. 

The Ziv–Lempel decomposition of a string S can also be computed off-line in linear time by 
a bottom-up traversal of the lcp-interval tree; see Algorithm 4.4. To this end, we add another value 
min of type integer to the

quadruples stored on the stack. This value is initially set to  ⊥ and will be updated by the process 
function.  At  any stage,  when the function  process  is applied to  an  l-interval  [i..j],  all  its  child 
intervals  are  known and have  already been  processed  (note  that  [i..j]  ≠ [0..n]  must  hold).  Let 
[l1..r1], [l2..r2], . . . , [lk..rk] be the k child intervals of [i..j], stored in its childList. Let min1, . . . ,  
mink be the respective min-values of the child intervals. Let

M = {min1, . . . , mink}  ∪ suftab[q] | q  [∈ i..j] and q∉ [lp..rp] for all 1 ≤  p ≤ k.

Compute min := minM and assign for all q  ∈ M with q ≠ min: sq := min and lq := l. Finally, for the 
root [0..n] of the lcpinterval tree, we assign for all q  ∈ M: sq := 0 and lq := 0.
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